【七年级超简单】【数学线段】问题!!!!!重金8.5Q币!!!
AC:CD:DE:EB=2:3:4:5
设AC=2b,则CD=3b,DE=4b,EB=5b,AB=14b
M为AC中点,则AM=AC/2=b
P为CD中点,则PD=CD/2=3b/2
Q为DE中点,则DQ=DE/2=2b
N为BE中点,则BN=EB/2=5b/2
MN=AB-AM-BN=14b-b-5b/2=21
则b=2×21/21=2
∴PQ=PD+DQ=3b/2+2b=7b/2=7×2/2=7
谁有七年级下数学难题
七年级下期期末复习题
班级_________ 姓名___________学号___________
一、 选择题
1、若代数式7—2x和5—x的值互为相反数,则x的值为( )
A 4 B 2 C D
2、如图,AB∥ED,则∠A+∠C+∠D=( )
A.180° B.270° C.360° D.540°
3、下列条件中,不能判定三角形全等的是 ( )
A、三条边对应相等 B、两边和一角对应相等
C、两角的其中一角的对边对应相等 D、两角和它们的夹边对应相等
4、小明用一枚均匀的硬币试验,前7次掷得的结果都是下面向上,如果将第8次掷得下面向上的概率记为P,则( )
A、P=0.5 B、P<0.5 C、P>0.5 D、无法确定
5、某班在组织学生议一议:测量1张纸大约有多厚.
出现了以下四种观点,你认为较合理且可行的观点是( )
A、 直接用三角尺测量1张纸的厚度
B、 先用三角尺测量同类型的2张纸的厚度
C、 先用三角尺测量同类型的100张纸的厚度
D、 先用三角尺测量同类型的1000张纸的厚度
6、下列说法中错误的是( )
A、三角形的中线、角平分线、高线都是线段;
B、任意三角形的内角和都是180°;
C、三角形按边分可分为不等边三角形和等腰三角形;
D、三角形的一个外角大于任何一个内角.
7、已知三角形的三边分别为2, ,4那么 的取值范围是( )
A、 B、 C、 D、
8、在一个三角形,若 ,则 是( )
A、直角三角形 B、锐角三角形 C、钝角三角形 D、以上都不对
9、一辆汽车以平均速度60千米/时的速度在公路上行驶,则它所走的路程s(千米)与所用的时间t(时)的关系表达式为( )
A、 B、 C、 D、
10、正五边形的对称轴共有( )
A、2条 B. 4条 C. 5条 D.无数条
11、等腰三角形的一边等于3,一边等于6,则它的周长等于( )
A、12 B、12或15 C、15或18 D、15
12、下列图形中,不是轴对称图形的是 ( )
A B C D
二、填空题
1、多项式3a2 b + 2b –1第三项的系数是____________,次数是____________.
2、等腰三角形一个底角为36°,则此等腰三角形顶角为___________.
3、以下四个事件,它们的概率分别为多少,填在后面的横线上.
事件A:在一小时内,你步行可以走80千米,则P(A)= ;
事件B:一个普通的骰子,你掷出2次,其点数之和大于10,则P(B)= ;
事件C:两数之和是负数,则其中必有一数是负数,则P(C)= .
4、在"变量之间的关系"一章中,我们学习的"变量"是指自变量和因变量,而表达它们之间关系的通常有三种方法,这三种方法是指 、 和 .
5、如图,有一块三角形的土地,现在要求过三
角形的某个顶点画一条线段,将它的面积平均分
成两份,你认为这条线段应该如何画
__________________;为什么?_____________________.
6、把一张写有"A、B、C、D、E、1、2、3、4、5"字母和数字字样的长方形纸条,平放在一张平面镜前的桌子上,则镜子里纸条上的字母和数字不改变的是__________.
7、如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,则ΔABD的周长为____cm.
8、如图,∠A=20 ,∠C=40 ,∠ADB=80 ,则∠ABD=___,∠DBC=___,图中共有等腰三角形___个.
9、如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,若 PMN的周长=8厘米,则CD为 ___厘米.
10、一根竹竿长3.649米.精确到十分位是 米;银原子的直径为0 .0003微米,相当于 米
11、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy- y2)-(- x2+4xy- y2)=- x2_____+y2空格的地方被钢笔水弄149了,请你帮他补上!
三、作图题
如图(三—2),台球桌上有一球A,怎样去
击打球A依次撞击边框MN、NP反射后,撞击
到B球.(画出示意图,不写画法,保留画图
痕迹)
四、解答题
1、(1)2(m+1)2-(2m+1)(2m-1)
(2)
(3) ,其中
2、如图(四—1)在△ABC中,∠B=40 ,∠BCD=100 ,EC平分∠ACB,求∠A与∠ACE的度数.
五、证明题
1、如图(五—1),点B、F、C、E在同一条直线上,FB=CE,AB∥ED ,AC∥FD ,
求证:AB=DE、AC=DF
2、如图,已知, 均为等边三角形,BD、CE交于点F.
(1)求证:BD=CE
(2)求锐角 的度数.
六、探究题
甲、乙两人(甲骑摩托车,乙骑自行车)从A城出发到100千米处的B城旅游,如右图表示甲、乙两人离开A城路程与时间之间的关系图象.
1、 分别求出甲、乙两人这次旅程的平均速度是多少?
2、 根据图象,你能得出关于甲、乙两人旅行的那些信息?
注:回答2时注意以下要求:
(1)请至少提供三条相关信息,如由图象可知,乙比甲早出发4小时(或甲比乙晚出发4小时)等;(2)不要再提供(1)列举的信息.
3、乘法公式的探究及应用.
(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如右图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达)
(4)运用你所得到的公式,计算下列各题:
① ②
7年级求角,线段长度的问题带答案
你是谁记得就算是不是
七年级线段应用题
如果这四个居民小区不在同一直线上,也没有3个小区在同一直线上,
那么把这四个小区看成四个点,组成一个四边形.
画出2组对角线,对角线的交点处建购物中心才能使4个居民小区到购物中心的距离之和最小.
如图上的O点处.
如果建在其它地方,如M处,
则MB+MC>BC?(三角形BCM中任意2边之和大于第三边)
? ?MA+MD>AD? (三角形ADM中任意2边之和大于第三边)
如果四个小区在同一直线上:建在中间2个小区之间就可.
如果有三个小区在一直线上:
就要建在不在直线上这个小区到三个小区组成的直线垂线的交点(垂足)上.
七年级上册人教版求线段长度的应用题和求角度数的应用题20道
●、如图,∠1=∠2,∠3=∠4,∠5=130度,那么∠A=( )度.●、如图5,点0为直线AB上的一点,∠BOC是直角,∠BOD:∠COD=4:1.则∠AOD是( )度.●、如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度.1.如图在△ABC中,AD是BC边上的高,BE平分∠ABD,交AD于E.已知∠BED=60°,∠BAC=50°,则∠C= ( ) ECDBA A、70° B、50° C、60° D、30° 9.如图,把一个长方形纸片沿EF折叠后,D、C分别落在D'、C'位置上,若∠EFB=65°,则∠AED'为 A.50° B.55° C.60° D.65° A D B C E F D' C' 65°